Iwscff-2015 -xx-xx Feedback-based Inhomogeneous Markov Chain Approach to Probabilistic Swarm Guidance

نویسندگان

  • Saptarshi Bandyopadhyay
  • Soon-Jo Chung
  • Fred Y. Hadaegh
چکیده

This paper presents a novel and generic distributed swarm guidance algorithm using inhomogeneous Markov chains that guarantees superior performance over existing homogeneous Markov chain based algorithms, when the feedback of the current swarm distribution is available. The probabilistic swarm guidance using inhomogeneous Markov chain (PSG–IMC) algorithm guarantees sharper and faster convergence to the desired formation or unknown target distribution, minimizes the number of transitions for achieving and maintaining the formation even if the swarm is damaged or agents are added/removed from the swarm, and ensures that the agents settle down after the swarm’s objective is achieved. This PSG–IMC algorithm relies on a novel technique for constructing Markov matrices for a given stationary distribution. This technique incorporates the feedback of the current swarm distribution, minimizes the coefficient of ergodicity and the resulting Markov matrix satisfies motion constraints. This approach is validated using Monte Carlo simulations of the PSG–IMC algorithm for pattern formation and goal searching applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inhomogeneous Markov Chain Approach To Probabilistic Swarm Guidance Algorithms

Small satellites are well suited for formation flying missions, where multiple satellites operate together in a cluster or predefined geometry to accomplish the task of a single conventional large satellite. In comparison with traditional large satellites, small satellites are modular in nature and offer low development cost by enabling rapid manufacturing using commercial-off-the-shelf compone...

متن کامل

Probabilistic Guidance of Swarms using Sequential Convex Programming∗

In this paper, we integrate, implement, and validate formation flying algorithms for large number of agents using probabilistic swarm guidance with inhomogeneous Markov chains and model predictive control with sequential convex programming. Using an inhomogeneous Markov chain, each agent determines its target position during each time step in a statistically independent manner while the swarm c...

متن کامل

Decentralized probabilistic density control of autonomous swarms with safety constraints

This paper presents a Markov chain based approach for the probabilistic density control of a large number, swarm, of autonomous agents. The proposed approach specifies the time evolution of the probabilistic density distribution by using a Markov chain, which guides the swarm to a desired steady-state distribution, while satisfying the prescribed ergodicity, motion, and safety constraints. This...

متن کامل

Thermal negativity in a two qubit XXX and XX spin chain model in an external magnetic field

In this paper we studied the thermal negativity in a two-qubit XX spin ½ chain model and XXX spin1/2 chain model(isotropic Heisenberg model)spin-1/2 chain subjected to an external magnetic field inz direction. We calculate analytical relation for the thermal negativity for two qubit XX and XXX spinchain models in the external magnetic field. Effects of the magnetic field and temperature on then...

متن کامل

Epidemiological Survey of Accidents and Incidents in Haftkel During 2014

  Background and aims: <span style="color: #221e1f; font-family: Optima ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015